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The Physics of Inflation
from the CMB

« Inflation: initial phase of accelerated
expansion with shrinking horizon — INFLATION
explains flatness + fluctuations

« Well tested for density fluctuations

THE ENTIRE
OBSERVABLE
UNIVERSE!

« Many models of inflation produce
inflationary gravitational waves.
Strength: parameterized by
tensor/scalar ratio r




The Physics of Inflation
from the CMB

« Detection: confirm inflation paradigm:;
strength tells us the energy scale INFLATION

« Even improved upper limits on r very
interesting. Target: ruling out r>0.001
will exclude large field models

THE ENTIRE
OBSERVABLE
UNIVERSE!

« Best way to detect inflationary GWSs:
CMB. Not T or E-polarization, but
characteristic CMB B-polarization



CMB B polarization™ with r = 0

B-mode
polarization:
no leading
order

signal from
scalar

density
perturbations! 10°
B-modes are
a “null
channel”




See r clearly as
there is no
background
cosmic variance
from normal
(scalar) density
perturbations

Limits: o(r)<0.1

CMB B polarization* with r>0

10°



See r clearly
as there is no
background
cosmic
variance from
normal
(scalar)
density
perturbations

CMB B polarization™ with r>0

What is needed to reach r~0.0017

(2 orders of magnitude improvement)

10°



Noise and Systematics

« Signal is extremely
small (<100 x T)

* Requirement: Need
extremely low
polarization noise level
(~0.5uK’, fsky~0.04)

* Low levels of
systematics from
beam / leakage,
readout...

Approximate raw experimental sensitivity (LK)
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Foregrounds

« Galactic emission also sources B-mode polarization
« Requirement: multifrequency data (~8+fregs.) to remove.

« How complex are foregrounds” (Decorrelation, AME,
variation...?)

Planck polarized dust map



CMB Lensing Noise

Grav. lensing of CMB also
makes B; lensing noise
limits measurements. How
to reduce?

Delensing: measure
lensing (see later), deduce
Blens and subtract

Requirement: high-
resolution, low noise (<4,
~1uK’), good delensing
algorithms!

N.B. Recently, first demonstration in data! [Larsen/Challinor/Sherwin+2016,

Sherwin/Schmittfull 2015]
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Neutrino Masses

 We know mass differences, but don’t know the mass scale, or
even which neutrino is heaviest (i.e. the mass ordering)

« measuring the sum of masses »_m. will give lots of insight
(ultimate goal: mechanism that gives neutrinos mass)
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Mass sum: >60 meV >100 meV
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Cosmic Neutrino Background:
Changes Matter Structure Growth

 The more massive neutrinos are, the more small scale
matter structure is blurred out.

Cosmic
mass
distribution

Image:
Viel++
2013

Neutrino Mass Negligible Neutrino Mass Large (qualitative)

- Small scale blurring also seen in CMB lensing map 13



Cosmic Neutrino Background:
Changes Matter Structure Growth

 The more massive neutrinos are, the more small scale
matter structure is blurred out.

CMB Source

Cosmic
mass
distribution

CMB
lensing
map

[Sherwin++ in prep.]

« Small scale blurring also seen in CMB lensing map



Challenges and Requirements:
Lensing and Neutrino Mass

« Target ~60 meV or
o(Y my)~15 meV Signal-to-noise on lensing

- Requirements: large area,
high resolution, low-noise
(fsky~0.2,~<uK’ <4’)
polarized CMB data for
lensing (also useful for DE)

L _ ¢ Where we are now
« Significant challenges in N 5

J— 1 —
N
&

lensing data analysis and e & s e
theory! But achievable

(problem: tau?)
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Light Particles and Cosmology

« Cosmic Neutrino Background: in radiation era, very
large part of the energy density - 41% of total!

* Influences expansion rate H (as extra form of radiation):

3M§1H2 ~ Py T Py

17



Light Particles and Cosmology

Cosmic Neutrino Background: in radiation era, very
large part of the energy density - 41% of total!

Influences expansion rate H (as extra form of radiation):

2 172 _ 8 11\’ p,
3Mp1H ZIO’Y—I_IOI/G Neff:?<z> a

Energy density parameterized via number of effective
neutrino species N_+. Measure via CMB

— Measure this with Planck: N.g = 3.04 & 0.18
— So what? We have Z-decay measurements.
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N« from Cosmology:
A Universal Probe for Light Relics

« Not just sensitive to particles with the SM couplings of
neutrinos

« Gravity sees everything: cosmology probes all that is
neutrino like (radiation, free-streaming)

3M§1H2 = Py T Py

« Can hunt for any new light (relativistic, weakly coupled)
particles!
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History of an Extra Light Particle

At high energies, weakly
interacting particle is
produced in thermal
equilibrium. It freezes out at
Tteereout- At first, AN 4~1.

Universe cools. Phase
transition! (e.g. muons/anti-
muons annihilate).

20



History of an Extra Light Particle

* At high energies, weakly
interacting particle is
produced in thermal
equilibrium. It freezes out at

At first, AN 4~1.

Tfreeze—out'

« Universe cools. Phase
transition! (e.g. muons/anti-
muons annihilate).

* Annihilating particles dump

4/3
11 5
Ny =S (_) Py
7\ 4 P
—>

energy into photons not —
particle. AN_; goes DOWN
for every phase transition
after freeze out.

Impact on energy gets diluted
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A Particle Freezes Out.
How Much N4 Does it Contribute?

« Freeze out late / low energy:

T T T T T T
AN ~ ‘l === Real Scalar
eﬂ: \ — Weyl Fermion
0 = Vector
10 =
Planck 20
§° ................. L
<
1071
10—2 | 1 1 1 1 1
1073 102 107! 100 10! 102 103 10*
TF (GeV)

22



A Particle Freezes Out.
How Much N4 Does it Contribute?

=== Real Scalar
=== Weyl Fermion
0 === Vector
« Here, some muons (e,9.) 10
will annihilate after freeze Planck 29
OUT ANeff ~O5 g;" ----------------- P:lzln_cls lq ............
<
107!
102 ] 1 ] ] ] I
1073 1072 101 10° 10! 102 103 104

TF (GGV)

[Baumann++ 2015]
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A Particle Freezes Ouit.
How Much N4 Does it Contribute?

=== Real Scalar
=== Weyl Fermion
=== Vector

10°

Planck 20
ST R | 1 A — Hlanck lg @ eccccanaa
5
« At high freeze-out 0
temperature, the particle
misses out on lots of energy
from the QCD phase 10-2 1 1 1 1 1 i
. 03 1072 107! 100 10! 102 103 104
transition, so AN is very Tr (GeV)
small.
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N What is the Target?

10°

I
Real Scalar
Weyl Fermion

Vector

Planck 20

AA]\/vcff

Planck lo

1071 160 l(l)1 162
. TF (GGV)
 |If we can measure this:
target sensitivity, can See\,l Real Scalar: AN.g = 0.027

any new light particle that
was ever in equilibrium (out
to reheating temp.!)

1
103 10*

Weyl Fermion: ANcg = 0.047

Vector boson: ANgg = 0.054




Probing N« in the CMB Power Spectra

« Change in early expansion rate > change in diffusion time >
small change in damping seen in CMB power spectrum.

C|TT

[Hou++ 2013]

0 2000 multipole |

« Also: small shift in phases (free-streaming). Delensing helps!
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Challenges / Requirements:
High Precision Small-scale CMB Spectra

* Requirement to hit
targets: Very low
noise (~uK’) and
large sky areas
(fsky~1)

« (Good beam
systematics control

* Or lower noise: 2
sigma, room for
iImprovement

QCD PT

m===  Real Scalar
== Weyl Fermion

m—= \ector

10°

A]\/veﬂ“

1071 |

| | 1 1 | l
1073 1072 107! 10° 10! 102 103 10°
Tfreeze—out (GGV)
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CMB Stage IV
Requirements and Challenges

« CMB-54 is the next
generation CMB survey.
Requirements:

* |ow noise (~1uK’)
>500000 bolometers

« 5+ frequencies
>multichroic pixels

* high resolution (<4’)
>3+ meter telescope

« Main challenges: scale /
systematics tolerance /
ultra high precision data
analysis

29



Beyond CMB-54

r/ M,: need more frequency

channels

- Space mission (Litebird /
PIXIE/Core...)

Ngi: need lower noise over
more area
- “CMB-55" to reach 5 sigma

on minimal targets

Spectral distortions for P(k),

lines..:

- Ultra sensitive
spectrometer in space
(PIXIE / PRISM-like...)
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Overheard: cosmology talk, ca. 2013-2014

 “Planck will soon have observed all the modes in the CMB”

« “To learn about physics, the CMB game is over, LSS is the
only way forward.”
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Future CMB will Probe Physics from here to the
Highest Energies and Earliest Times

With CMB-S4 HISTORY OF THE UNIVERSE
Neutrino Mass

(target ~0.06eV)
[and Dark Energy,
cross-correlations]
via Lensing

and beyond,
probe:

Inflation via r AN ,
(target ~0.001) 3 Light relics via Neff

o
© o
LS

£\ (target ~0.03)

&

[+spectral
distortions, non-
Gaussianity]

Particle Data Group, LBNL © 2015 Supported by DOE

| think many of the most interesting areas
of CMB physics are just beginning! .
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Demonstrating Delensing:
Difference of Lensed and Delensed Temp. Spectra
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First demonstration of delensing in data!



Lensing Measurement

T'(1) = FourierTransform/|7T'(1)]
« Without lensing, CMB temperature modes are independent

(TT*(1— L)) = 0

* Lensing changes known statistics: introduces correlations

M1 (1= L)) ~d(L)

« S0: measure lensing by looking for these correlations in
temp. .

d(L) ~ / d*1 T()T*(1— L)

[Hu, Okamoto 2002]



Lensing Measurement

T'(1) = FourierTransform/|7T'(1)]
« Without lensing, CMB temperature modes are independent

(TT*(1— L)) = 0

* Lensing changes known statistics: introduces correlations

M1 (1= L)) ~d(L)

« S0: measure lensing by looking for these correlations in
temp. .

d(L) ~ / d*1 T()T*(1— L)

A

d(L) ~ / dl E(1)B*(1 - L)

[Hu, Okamoto 2002]

and polarization



Measuring CMB Lensing Convergence:
An Approximate Picture

Lensing

. convergence K
overdensity

induces B

modes .

[Hu, Okamoto 2002] look for lensing-induced correlations of E and B
(delens, iterate, for higher signal-to-noise)



CMB Lensing Convergence Measurement

K - el
True “, -

Lensing:

(Simulation E%
input, 2uK’ _

CMB noise)

10 degrees




CMB Lensing Convergence Measurement

Recovered 1§’*

lensing

For S4, over
much of the
sky! (~1/2?)
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[pipeline: Sherwin++ in prep. 2016]



